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1 Introduction

Gauged supergravities pertain to a topical subject of investigation because they are related

to the possibility of turning on a scalar potential in an effective theory of gravity which

can stabilize many of the scalar modes of the theory. Popular examples of such gaugings

are those obtained by flux vacua in superstring theory [1].

Particular classes of these vacua can show residual supersymmetry both in Minkowski

or anti de Sitter space, depending on the nature of the gauging of a given theory.

Minkowski vacua with residual supersymmetry correspond to theories with N -extended

Poincaré supersymmetry, with 0 ≤ N < 8 at D = 4. Typical compactifications giving rise

to such vacua are those based on generalized Calabi-Yau manifolds [2] or on twisted tori [3],

the latter being the modern version of the gauging of flat groups à la Scherk-Schwarz [4].

These vacua give a realization of the so called no-scale models as they usually provide

(partial) supersymmetry breaking with sliding gravitino mass and zero vacuum energy. In

these compactifications one can then turn on further fluxes such as those giving rise to

black holes and study interesting phenomena such as the attractor mechanism [5].

Another class of flux compactifications, whose interest is further motivated by addi-

tional physical properties, is the one corresponding to anti de Sitter vacua. These vacua
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are related to the famous AdSd+1/CFTd correspondence, the most popular one being the

d = 4 case [6, 7]. In this case the supergravity in question is the maximally extended

gauged supergravity at D = 5 based on the superalgebra SU(2, 2|4) [8]. Other examples

of anti de Sitter supergravities relevant for the AdSd+1/CFTd correspondence are those at

d = 3 and d = 6, based on two different real forms of the orthosymplectic algebra OSp(8|4).
However in recent times other classes of AdS/CFT dual theories have been found, after

realizing that superconformal invariant Chern-Simons theories can be constructed whose

dual bulk supergravity theories correspond to lower N orthosymplectic algebras OSp(N|4),
with 2 ≤ N ≤ 6 [9–14].

It is the aim of the present paper to investigate some of the exceptional properties of

the N = 6 gauged supergravity theory and its “dual relation” to an N = 2 theory based

on the exceptional model related to JH
3 , one of the four degree-three Jordan algebras of

the magic square introduced in [15–17]. Already in the ungauged case N = 6 and N = 2

supergravity, based on symmetric scalar manifold SO∗(12)/U(6), exhibit a duality rela-

tion, since, although different in the fermionic sector, they have the same bosonic content.

In particular they exhibit the same (large ) extremal black-hole attractor solutions where

the role of the BPS and non BPS configurations in the two theories are exchanged. The

superstring origin of these two ungauged theories was investigated in [18] in the context

of compactifications on asymmetric orbifolds. Let us remark, moreover, that the duality

between the N = 6 and N = 2 four-dimensional theories has a three-dimensional coun-

terpart in the duality between N = 12 supergravity and the N = 4 theory based on the

exceptional quaternionic manifold E7(−5) /[SU(2) × SO(12)] [19, 20].

In the present investigation we concentrate on the gauging of these theories and we will

show that both of these models can be obtained as truncations of the gauged N = 8 theory

of [21], with gauge structure OSp(6|4) × SO(2) in the N = 6 case, and OSp(2|4) × SO(6)

in the N = 2 case. These superalgebras are indeed both subalgebras of the OSp(8|4)
superalgebra, when one retains respectively 24 or 8 of the original 32 fermionic generators

(anti de Sitter spinors). As far as the gauging is concerned, we analyze the consistency of

the truncation procedure and, by use of the embedding tensor formalism, we give a detailed

analysis of the gauge sector of both theories, for a generic group. We then work out the

details in the particular case of the SO(2) × SO(6) gaugings, and determine the explicit

form of the fermionic shifts and the scalar potential.

From a four-dimensional point of view, the N = 6 theory is obtained just by gauging

the SO(6) gauge group inside the U-duality group SO∗(12), which is the maximal group

commuting with SU(2) inside E7(7) (the U-duality group of N = 8, D = 4 supergravity).

On the other hand, the N = 2 theory is obtained by gauging both SO(6) ⊂ SO∗(12) and

SO(2) ⊂ SU(2), the global R-symmetry of the truncated N = 2 theory, which does not

participate to the gauging in the N = 6 case.

Note that in the N = 6 theory the spectrum is obtained from the N = 8 spectrum by

projecting out all SU(2) non-singlets. An extra SO(2) abelian symmetry, implied by the

structure of the N = 6 supergravity multiplet remains, commuting with the superalgebra.

On the other hand in the N = 2 theory the SO(6) symmetry commutes with the super-

charges and it then merely acts as a matter flavor symmetry. It can therefore be gauged

by the N = 2 matter vectors, which precisely sit in the adjoint representation of SO(6). In
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fact, if in the truncation we would only keep SO(6) singlets, we would obtain pure N = 2

anti de Sitter supergravity, with the gravitino mass induced by a N = 2 Fayet-Iliopoulos

term. This way to generate the gravitino mass is indeed common to all N = 2 theories

in AdS4, when hypermultiplets are absent. The N = 2 theory under investigation is a

particular case of AdS4 theories with superalgebras OSp(2/4) ×Ge, where Ge denotes the

gauge symmetry, corresponding to the gauged isometries of the vector multiplets scalar

manifold. Since the manifold spanned by the scalars in N = 2 theory is only constrained

by supersymmetry to be special-Kähler, it can be chosen to have any isometry G, so that

we can always accommodate Ge ⊂ G such that Ge is an electric subgroup of G. The sim-

plest example is the minimal series [22, 23] where G = SU(1,m) and Ge can be embedded

in G for m ≥ Adj [Ge]. In this case the gauge symmetry is SO(2) × Ge, with an AdS4

vacuum which is SO(2) ×Ge invariant. A similar embedding of Ge in G can be given also

for N = 3 supergravity with gauge group SO(3) × Ge and for N = 5 with gauge group

SO(5). The latter theory was obtained long ago by de Wit and Nicolai [24].

Recently many of these theories have been shown to have a CFT3 dual as a Chern-

Simons gauge theory. In this case the Ge commuting with OSp(N|4) is identified with

some flavor symmetry of the conformal theory matter multiplets. The AdS4 theory with

lowest supersymmetry is based on the OSp(1|4) superalgebra, with no gauge sector. In

this case, symmetric AdS4 vacua with any gauge group can be accommodated.

Note that the N = 6 case has a special role among the N -extended theories, because

it is the only one with N > 4 which contains an additional U(1) conserved current, and

further because it is the only one which has a zero-center module supergravity multiplet,

unlike N 6= 6 orthosymplectic supergravities [25].

The paper is organized as follows: in section 2 we point out some exceptional properties

of the OSp(6|4) algebra: to have the gravity multiplet as a zero center module, according to

Flato and Fronsdal [25], and to have a zero Killing-Cartan form, which makes it more similar

to the SU(2, 2|4) case than other orthosymplectic cases. The definition of such exceptional

properties and of their possible physical implications is reported in this section. In section 4

we discuss the N = 6 and N = 2 dual theories, both at the ungauged and gauged level, as

they come from different truncations of N = 8 (anti de Sitter or Poincaré) supergravity in

four dimensions and we make some comments on the relation of N = 6 supergravity with its

ancestor theory, namely IIA supergravity compactified on AdS4×CP3 [26–30], which is the

higher dimensional theory underlying N = 6 supergravity. In section 5 we briefly discuss

a different N = 2 truncation of the N = 8 theory, in which the supergravity multiplet

is coupled to 10 hypermultiplets and no vector multiplet. In appendix A examples of

supergroups and supercosets with vanishing Killing-Cartan form are given. In appendix B

the reader may find a list of branchings and decompositions which are used in our analysis.

Finally in appendix C the spin-1/2 mass terms in the N = 6 and N = 2 theories are given.

2 Zero center modules

The N = 6 AdS-theory, besides being interesting in the light of some recent developments in

string theory, also has some mathematical peculiarities, related to zero-center modules, that
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we want to elaborate on in the present section. Understanding their physical implications

is beyond the scope of the present paper.

From a group-theoretical point of view, N = 6 supergravity on AdS4 has two reasons

for being exceptional: 1 ) the superalgebra on which is based, namely OSp(6|4) has zero

Killing-Cartan form and 2 ) the zero-center module coincides with the supergravity multi-

plet.

Let us start recalling some basic facts about orthosymplectic superalgebras, the relation

with supergravity backgrounds, the Killing-Cartan forms and the zero-center modules.

The compactification on AdS4 ×CP 3 of 10d type IIA string theory can be completely

discussed in terms of the supermanifold

OSp(6|4)
U(3) × SO(1, 3)

. (2.1)

The bosonic subgroup of the isometry group OSp(6|4) is SO(6) × Sp(4) and therefore the

bosonic coset SO(6)×Sp(4)/U(3)×SO(1, 3) is the direct product of the homogeneous spaces

CP 3 ×AdS4. In addition, there are fluxes associated to F (4) = gǫ and F (2) = kJ where ǫ

and J are the Levi-Civita tensor in AdS4 and the Kälher form on CP 3, respectively. The

fluxes g and k appear in the commutation relations of the supercharges. This background

is a solution of type IIA supergravity in 10d (see [26–28, 30]). The fermionic sector is

indeed described by 24 anticommuting supecharges QA
α in the fundamental representations

of SO(6) and Sp(4). The superalgebra associated to (2.1) is given in terms of the bosonic

generators Pαβ (where α, β = 1, . . . , 4 and are the Sp(4) generators) and TAB (where

A,B = 1, . . . , 6 and they are SO(6) generators) and in terms of the fermionic generators QA
α

{

QA
α , Q

B
β

}

= ηABPαβ + TABǫαβ ,

[Pαβ , Pγδ ] =
1

2

(

ǫγ(αPβ)δ + ǫδ(αPβ)γ

)

,

[TAB , TCD] =
1

2

(

ηC[ATB]D − ηD[ATB]C
)

, (2.2)

[TAB , QC
α ] = ηC[AQB]

α ,

[Pαβ , Q
C
γ ] = ǫγ(αQ

C
β) .

In order to see the presence of the constants g and k, we decompose the generators

Pαβ = γm
αβPm + g−1 γmn

αβ Lmn where Pm are the generators of the coset and Lmn are the

SO(1, 3) generators, and TAB = fAB
IJ T IJ + fAB

ĪJ̄
T Ī J̄ + k−1 fAB

IJ̄
T IJ̄ where T IJ , T ĪJ̄ are the

generators of the coset SU(4)/U(3) and T IJ̄ are the generators of the subgroup. Therefore,

when the algebra is decomposed into the generators of the subgroup U(3) × SO(1, 3) one

can see the two constants g−1, k−1 multiplying the generators of the subgroup. Accord-

ingly, in the Maurer-Cartan equations of the coset, the coupling constants g and k multiply

the H-connections.

The form of the superalgebra is the same for any R-symmetry group SO(N ). The

Killing-Cartan form for N = 6 vanishes. We have to recall that the Killing-Cartan form is

defined as follows

K(X,Y ) =
1

2
Str
(

adXadY

)

, (2.3)
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where X, are generators of the supergroup and Str is the supertrace. In the appendix A,

the supergroups with vanishing Killing-Cartan form are listed [31]. On the other hand

the representations are classified according to the invariant tensors on the Lie superalgebra

denoted Casimir operators. Given a non-degenerate Killing-Cartan metric there is a simple

way to construct the basic quadratic Casimir. However, in general one can construct it as

follows: consider the following restricted metric (which coincides with the Killing-Cartan

form on the subgroups SO(6) and Sp(4) and on the supergenerators)

〈Pαβ , Pγδ〉 = ǫα(γǫδ)β , 〈TAB , TCD〉 = ηA[CηD]B , 〈QA
α , Q

B
β 〉 = ǫαβη

AB , (2.4)

where 〈, 〉 denotes the trace, and define

C2 = ǫαβǫγδ PαγPβδ − ηACηBD TABTCD + ǫαβηAB Q
A
αQ

B
β . (2.5)

C2 is constructed in terms of quadratic invariants of Sp(4) × SO(6). The coefficients of

the linear combination OSp(6|4) invariant can be found by commuting C2 with all the

fermionic generators of the supergroup.1 For OSp(N|4) there are other invariant Casimir

operators that can be constructed with higher powers of generators.

The irreducible, positive energy representations of Sp(4) are fully characterized by

the lowest value E0 of the energy and by the spin s and they are denoted by D(E0, s).

The massless representations are D(s + 1, s) and the Dirac singleton are D(1/2, 0) and

D(1, 1/2). Among the massless representations, D(2, 1) has both Casimir operators equal

to zero. (The same is also valid for the conformal group in 4d, namely SO(4, 2), whose

representations D(2, 1, 0) and D(2, 0, 1) have vanishing Casimir operators). Those repre-

sentations are referred to as zero-center module since the center of the enveloping algebra

is zero. In analogy with the conformal group in 3d Sp(4) and with SO(4, 2), the zero-center

module of a superalgebra is a representation characterized by the vanishing of all super-

Casimir operators. A zero-center module is a special short representation of a superalgebra

and it plays a role similar to the vacuum state.

According to [25], in the case of AdS4 algebras one can find the following zero-center

modules

OSp(6|4) N = 6 D(3, 2|1) ⊕D(5/2, 3/2|6) ⊕D(2, 1|15) ⊕D(2, 1|1)
⊕D(3/2, 1/2|20) ⊕D(3/2, 1/2|6̄) ⊕D(1, 0|15) ⊕D(1, 0|15) ,

OSp(5|4) N = 5 D(5/2, 3/2|1) ⊕D(2, 1|5) ⊕D(2, 1|1) ⊕D(3/2, 1/2|10)
⊕D(3/2, 1/2|5̄) ⊕D(1, 0|10) ⊕D(1, 0|10)

OSp(4|4) N = 4 D(2, 1|1) ⊕D(3/2, 1/2|4) ⊕D(1, 0|6) ,
OSp(3|4) N = 3 D(2, 1|1) ⊕D(3/2, 1/2|3) ⊕D(3/2, 1/2|1) ⊕D(1, 0|6) ,
OSp(2|4) N = 2 D(2, 1|1) ⊕D(3/2, 1/2|2) ⊕D(1, 0|2) .
OSp(1|4) N = 1 D(2, 1|1) ⊕D(3/2, 1/2|1) . (2.6)

where we have denoted by D(s + 1, s|n) respectively the Sp(4) representation and the di-

mension of the representation of the orthogonal group SO(N ). Notice that only OSp(6|4)
1We would like to stress the analogy with abelian Lie algebras: the Killing-Cartan form is vanishing,

but one can define an invariant bilinear form.
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has the supergravity multiplet (starting with the supergravity state D(3, 2|1) as the zero-

center module (by the way, it is also the only supergroup of the OSp(N|4) with vanishing

Killing-Cartan form). For the supergroup OSp(5|4), the zero center module is represented

by the gravitino multiplet D(5/2, 3/2|1). The other four examples have, as zero-center

module, the SYM multiplet with N = 1, 2, 3, 4 supersymmetries. The technique to es-

tablish the existence of unitary zero-center module representations is that of the “induced

representations” and it amounts to check if in the induced representation there is the trivial

representation (the “vacuum”). In that case the module is a zero-center module.

Let us look to other series of supergroups with analogous peculiarities. As we can

read from the appendix A there are other interesting supergroups with vanishing Killing-

form which play an important role in superstring.2 The most relevant one is the case of

PSU(2, 2|4), with supercoset

PSU(2, 2|4)
SO(1, 4) × SO(5)

(2.7)

whose bosonic part is described by AdS5 × S5. Again, one can study the sequence of

supergroups SU(2, 2|N ) where N = 1, 2, 3 and for each of them identifying the zero-center

module. The fermionic sector is described by complex supercharges Qa
I , Q

I
a (where I is the

SU(2, 2) index and a = 1, . . . ,N ). However, we can observe the following fact: we can

relate the supergroup PSU(2, 2|4) to the orthosymplectic OSp(4|4) by imposing the reality

condition [32, 33]

Qa
I = ǫIJδ

abQ
J
b . (2.8)

The invariant tensor ǫIJ breaks the group SU(2, 2) to SO(2, 3) ∼ Sp(4) while the invariant

tensor δab breaks the group U(n) down to SO(n). Therefore, we can relate the supergroup

PSU(2, 2|4) with OSp(4|4) and the latter has the vector multiplet as zero-center module.

Another interesting example is the superalgebra SU(2, 2|3) which underlies the N = 6

supergravity on AdS5 with gauge group U(3). It has a zero-center module which is the

supersingleton of SU(2, 2|3). In the same way as above we can break SU(2, 2|3) down

to OSp(3|4) which is the N = 3 vector multiplet in AdS4 (using the topological string

model constructed on Grassmannian spaces (see [34, 35]) it should be possible to justify

the selection rules discussed in [36]).

Notice that the OSp(3|4) has the vector representation as a zero-center module and

therefore, one can argue that the zero-center module representation of OSp type are related

to zero-center module representation of SU -type. To support this argument, we notice that

the case OSp(1|4) which has the zero-center module which contains the vector multiplet,

can be obtained by reducing it from SU(2, 2|1) which indeed has a zero-center module.

Indeed, one can verify that the zero-center modules of SU(2, 2|N ) are mapped into zero-

center modules of OSp(N|4).

2Another example is OSp(4|2), which might play a role in non-critical strings. It has zero Killing-Cartan

form and it would be interesting to study its zero-center modules.
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3 Universal supergravity relations

We recall that in any supergravity theory there is a universal relation between the anti de

Sitter cosmological constant and the gravitino mass. Indeed, for every four dimensional

extended theory supersymmetry implies that the following Ward identity holds:

δA
B V (φ) = −12 g2 S̄ACSCB + g2 N̄A

I N
I
B (3.1)

where SAB and NA
I are scalar field dependent matrices also appearing in the Lagrangian,

the former defining the gravitino mass-like term:

2 g SAB ψ̄
A
µ γ

µνψB
ν + h.c. , (3.2)

2 g SAB being the gravitino mass matrix, the latter entering the spin-1/2 – gravitino cou-

plings:

i g
(

NA
I λ̄I γµψµA + h.c.

)

, (3.3)

as reviewed in [37]. Here A,B, . . . are indices of the fundamental representation of the

R-symmetry group SU(N )×U(1), 3 their position (lower or upper) characterizing the left

or right chirality of the gravitini, while the index I, enumerating the spin-1/2 fields, is a

short-hand notation for the tensor character of the spin-1/2 fields.

The same matrices also appear in the order g contribution to the supersymmetry

transformation laws of the fermions which, as it is well known, is implied by the gauging

procedure:

δλI = · · · + g NA
I ǫA (3.4)

δψµA = · · · + i g SAB γµ ǫ
B . (3.5)

In an anti de Sitter background preserving all the N supersymmetries we have:

δλI = · · · + g NA
I ǫA = 0 ⇒ NA

I |SuSy AdS = 0 (3.6)

δψµA = · · · + i g SAB γµ ǫ
B 6= 0 ⇒ SAB |SuSy AdS 6= 0 . (3.7)

The precise relation, on the background, between the gravitino mass

m3/2 = 2 g
√

SABS̄AB/N (3.8)

and the scalar potential is then found from eq. (3.1):

V (φ|SuSy AdS) = −3m2
3/2 = Λ (3.9)

where Λ is the cosmological constant.

Let us write down explicitly how the scalar potential specializes, following from the

above relations, for the N = 2 and N = 1 cases, and what are the conditions to have an

3The U(1) factor being absent for the case N = 8.
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anti de Sitter vacuum with unbroken gauge symmetry and preserving all supersymmetry.

Note that the relations on the gauging of the N = 1 theory can also be obtained from the

ones on N = 2-extended supergravity by a consistent truncation, as discussed in [38]. For

the N = 2 theory, in the absence of hypermultiplets, we find [39]:4

V = −1

2
(ℑN−1)ΛΣPΛPΣ + (UΛΣ − 3L̄ΛLΣ)Px

ΛPx
Σ (3.10)

where PΛ is the prepotential for special geometry and Px
Λ the constant quaternionic pre-

potential corresponding to a Fayet-Iliopoulos term. The first term in eq. (3.10) is usually

written gī k
i
Λ k

̄
Σ L̄

ΛLΣ, see for instance [39], where ki
Λ are the Killing vectors of the spe-

cial Kähler manifold and LΛ is the upper part of the covariantly holomorphic symplectic

section. Using ki
Λ = i gī∂̄PΛ, the orthogonality relations PΛL

Λ ≡ PΛL̄
Λ = 0 and the

definition UΛΣ ≡ gīfΛ
i f̄

Σ
̄ = −1

2(ℑN−1)ΛΣ − L̄ΛLΣ, where fΛ
i = Di L

Λ and NΛΣ is the

kinetic matrix of the vector fields, one easily retrieves the expression in (3.10) from the

general one in [39]. The condition for an anti de Sitter supersymmetric background with

unbroken gauge group is

PΛ|vac = 0 ,
(

UΛΣPx
ΛPx

Σ

)

vac
= 0

Px
Λ|vac 6= 0 (3.11)

For the N = 1 case, instead, the scalar potential has the general form [40]:

V = eK
[

DiWD̄W̄ gī − 3|W |2
]

+
1

2
(ℑf−1)ABDADB (3.12)

where fAB denotes the holomorphic vector kinetic matrix, W (φ) is the superpotential

appearing in the fermion shifts of the chiral multiplet fermions and DA is the D-term

appearing in the fermion shifts of the gaugini in the presence of gauged isometries in the

chiral multiplet sector. In this case, the condition for an anti de Sitter vacuum preserving

all supersymmetries and gauge symmetry is

DA|vac = 0 , DiW |vac = 0

W |vac 6= 0 (3.13)

The cosmological constant is then, in this case

Λ = V |vac = −3
(

eK |W |2
)

vac
(3.14)

and the gravitino mass is

m3/2 =
(

|W | eK/2
)

vac
(3.15)

4Here we use the conventions of [39] in which the imaginary part ℑN of the vector kinetic matrix N is

negative definite.

– 8 –



J
H
E
P
0
4
(
2
0
0
9
)
0
7
4

4 Dual N = 6 and N = 2 gauged theories

It is known that ungauged N = 6 supergravity can be obtained from ungauged N = 8

supergravity by truncating out two gravitini multiplets. At a group theoretical level this

corresponds to decomposing the relevant fermionic SU(8) representations with respect to

SU(6) × SU(2) × U(1), under which the 8 branches as

8 → (6,1)+ 1
2

+ (1,2)− 3
2
, (4.1)

and keeping only the singlets under SU(2). In the following we shall use the indices

i, j, · · · = 1, . . . , 8 to label the 8 representation, which split into indices α, β, · · · = 1, 2

labelling the (1,2) and A,B, · · · = 1, . . . , 6 labelling the (6,1).5 Equation (4.1) im-

plies that the N = 8 gravitini ψi
µ decompose under SU(6) × SU(2) × U(1) ⊂ SU(8),

as ψi µ → (ψA µ, ψα µ), while the spin 1/2 fields χijk into (χABC , χABα, χAαβ ≡ χAǫαβ),

according to the following branching

56 → (20,1)+ 3
2

+ (6,1)− 5
2

+ (15,2)− 1
2
. (4.2)

The 28 SU(8) representation of the N = 8 central charges Zij branches in the following way

28 → (15,1)+1 + (1,1)−3 + (6,2)−1 , (4.3)

where (15,1)+1+(1,1)−3, to be labeled by the index Λ, represent the N = 6 central charges

ZAB and the singlet Zαβ = Z ǫαβ, while the remaining charges in the (6,2)−1 are truncated.

The corresponding branching of the SU(8) representation 70 pertaining to the scalar

fields φijkl, spanning M(N=8) = E7(7) /SU(8), reads:

70 → (15,1)−2 + (15,1)+2 + (20,2)0 . (4.4)

The truncation to the SU(2) singlets yields the 30 scalar fields of the N = 6 theory which

span the coset manifold

M(N=6) =
SO∗(12)

U(6)
, (4.5)

which is a submanifold of M(N=8)
6,7 of the theory is SO∗(12) which acts as a generalized

electric-magnetic duality. The 32 electric-magnetic charges are indeed obtained by branch-

ing the E7(7) representation 56 of the corresponding N = 8 charges with respect to the

5Here and in the following we reserve the indices A,B, . . . only to label the fundamental representation

of the U(6) R-symmetry group, while in the previous section they were associated with the fundamental

representation of the R-symmetry group of a generic N -extended supergravity.
6For the definition of SO∗(12), as a real form of SO(12,C), we refer the reader to standard group theory

books [41]. See also [42].
7We recall that the subgroup Ge of the on-shell global symmetry group of the theory, which transforms

the electric field strengths into electric field strengths, is a global off-shell symmetry of the Lagrangian. In

general Ge depends on the symplectic frame (choice of the electric and magnetic charges out of the 32).

The ungauged Lagrangian that we consider, however, will be invariant with respect to the Ge = SO(6)

subgroup of SO∗(12), which is the gauge group of the AdS theory. In this symplectic frame the vector fields

AΛ
µ are labeled by the index Λ whose first value Λ = 0 is chosen to correspond to the SO(6) singlet, while

the remaining 15 values label the adjoint representation of SO(6).
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maximal subgroup SO∗(12) × SU(2) of E7(7) and keeping only the singlets:

56 → (12,2) + (32,1) . (4.6)

We recall that the spinorial representation 32 of SO∗(12) is real. If in the N = 8 theory we

truncate the multiplets of the six gravitini fields ψAµ instead, we would obtain an N = 2

theory with the same bosonic sector as the N = 6 model but a different fermionic field

content. The N = 8 central charges give now rise to the N = 2 central charge Z and 15

matter charges ZAB. This theory therefore describes N = 2 supergravity coupled to 15

vector multiplets and no hypermultiplets. The scalar fields in the vector multiplets span the

special Kähler manifold (4.5). The spin 3/2 fields ψαµ belong to the (1,2)− 3
2

representation

in (4.1) while the spin 1/2 fields χABα are defined by the (15,2)− 1
2

representation in the

branching (4.2). This peculiarity of the N = 2 and N = 6 truncations just discussed, to

share the same bosonic content although differing in the fermionic sector, was exploited in

the study of extremal black holes, where one finds a class of common extremal solutions,

which, however, have different supersymmetry properties in the two theories: the BPS

solution of the N = 6 theory is non-BPS in the N = 2 one and vice versa [43–47].

To summarize the N = 8 → N = 6, N = 2 truncations discussed above, let us denote

by Φ(in) the (bosonic and fermionic) fields surviving the truncation and by Φ(out) those

fields which are truncated away. For the two truncations these fields read:

N = 6 :

{

Φ(in) = {φABαβ = φABǫαβ, Aαβ
µ , AAB

µ , ψA
µ , χ

ABC , χA, c.c}
Φ(out) = {φABCβ , AAα

µ , ψα
µ , χ

ABα, c.c.}
, (4.7)

N = 2 :

{

Φ(in) = {φABαβ = φABǫαβ, Aαβ
µ , AAB

µ , ψα
µ , χ

ABα, c.c}
Φ(out) = {φABCβ , AAα

µ , ψA
µ , χ

ABC , χA, c.c.}
(4.8)

Let us now consider the gauging of these N = 6 and N = 2 theories. As we shall

show such gauged theories can all be constructed as a truncation of the N = 8 theory

with a suitable gauging. The most general N = 8 gauged supergravity can be written

in a manifestly SU(8) invariant form [21], in which the fermion shifts, which define the

fermion mass terms and the scalar potential, consist in a symmetric tensor Sij = Sji and

a tensor N i
jkl in the 36 and 420 of SU(8) respectively.8 In terms of these quantities, the

supersymmetry variations of the (chiral components of the) fermion fields read:

δψi
µ = · · · + i g Sij γµ ǫj , (4.9)

δχijk = · · · + g Nl
ijk ǫl . (4.10)

According to the general form (3.1) of the Ward identity, the N = 8 scalar potential reads:

V (N=8)(φ) = g2

(

1

48
Ni

jklN i
jkl −

3

2
Sij Sij

)

. (4.11)

8It is useful here to define the correspondence between our notation and the one used in [48–50], to be

distinguished by a prime from the quantities denoted here with the same symbol: γµ = i γ′µ, ψi
µ = 1√

2
ψ′ i

µ ,

ǫi =
√

2 ǫ′ i, Sij = − 1√
2
A

ij
1 , Nℓ

ijk = −
√

2A2ℓ
ijk.
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As far as the supersymmetry transformation rules are concerned, for the order g sector

involving the fermion shifts we find the decomposition:

δψA
µ = · · · + i g

(

SAB γµ ǫB + SAβ γµ ǫβ

)

, (4.12)

δψα
µ = · · · + i g

(

SαB γµ ǫB + Sαβ γµ ǫβ

)

, (4.13)

and

δχABC = · · · + g
(

ND
ABC ǫD +Nβ

ABC ǫβ
)

, (4.14)

δχABα = · · · + g
(

ND
ABα ǫD +Nβ

ABα ǫβ
)

, (4.15)

δχA = · · · + g
(

NB
A ǫB +Nβ

A ǫβ
)

. (4.16)

The above fermion shifts correspond respectively to the branchings:

36 → (21,1)+1 + (6,2)−1 + (1,3)−3 (4.17)

420 → (105,1)+1 + (20,2)+3 + (84,2)−1 + (15,1)+1 + (15,3)+1 + (35,1)−3 + (6,2)−1 .

(4.18)

In order to have a consistent truncation, the solutions of the equations of motion of the

reduced theory must also be solution in the parent theory, namely

δL
δΦ(out)

≈ 0 , (4.19)

where ≈ 0 have to be intended in a weak sense, namely at Φ(out) ≡ 0. This fact in particular

implies that all terms in the Lagrangian bilinear in the fermions and containing one retained

and one truncated fermion, must disappear in the reduction, otherwise the corresponding

field equations obtained by varying the Lagrangian with respect to the truncated fermions,

would not be (weakly) satisfied. Let us consider the following order g fermion bilinears in

the gauged N = 8 Lagrangian, which can be derived from the general expression for the

fermion mass-like terms (3.2) and (3.3):9

g

(

4SAα ψ̄
A
µ γ

µνψα
ν +

1

6
Nα

BCD χ̄BCD γµψα µ+

+
1

2
NA

BCα χ̄
BCα γµψA µ +Nα

A χ̄
A γµψα µ

)

+ h.c. , (4.20)

Since the terms in eq. (4.20) are linear in the truncated fermions, we conclude that

consistency of the two truncations requires the components of the N = 8 fermion shifts

which transform as doublets of SU(2), namely SαB in the (6,2)−1, N
β

ABC in the (20,2)+3,

ND
ABα in the (84,2)−1 and Nβ

A in the (6,2)−1, to be weakly zero. Therefore in order

for the truncation of gauged N = 8 to N = 6 or N = 2 to be consistent, the gauging

9Here we restrict to the ψψ and ψχ terms in the Lagrangian. We refer the reader to appendix C for the

explicit form of the χχ mass-like terms.
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must be such that, when restricted to the common scalar sector of the two truncations,

the components of the fermion shifts transforming as doublets under SU(2) must vanish.

From now on we shall assume this to be the case. The implications of this condition on

the possible gauge groups will be discussed in the next subsection. The resulting N = 6

and N = 2 theories then involve the transformation rules:

δψA
µ = · · · + i g SAB γµ ǫB , (4.21)

δχABC = · · · + g ND
ABC ǫD , (4.22)

δχA = · · · + g NB
A ǫB , (4.23)

for the N = 6 theory, while for the N = 2 theory we have:

δψα
µ = · · · + i g Sαβ γµ ǫβ , (4.24)

δχABα = · · · + g Nβ
αAB ǫβ . (4.25)

While SAB, Sαβ, NB
A ≡ NB

Aαβ ǫαβ/2 are irreducible SU(6)× SU(2)×U(1)-tensors in the

(21,1)+1, (1,3)−3 and (35,1)+3 respectively, the shift tensors ND
ABC , Nβ

αAB transform

in reducible representations and can therefore be written as follows:

ND
ABC =

◦
ND

ABC +
3

4
δ
[A
D NBC] ,

Nβ
αAB =

◦
Nβ

αAB − 1

2
δα
β N

AB , (4.26)

where the irreducible tensors
◦
ND

ABC , NAB,
◦
Nβ

αAB transform in the (105,1)−1, (15,1)−1

and (15,3)−1 representations respectively (this implies in particular the properties
◦
ND

ABC =
◦
ND

[ABC],
◦
NC

ABC = 0).

Let us note, however, that the shifts involved in the transformation of projected out

gravitini and dilatini with respect to projected out supersymmetry parameters are in gen-

eral different from zero. In the truncation to N = 6 they are Sαβ and Nβ
αAB , while in the

truncation to N = 2 they are SAB, ND
ABC and NB

Aαβ = NB
A ǫαβ. Some of them still

enter the Lagrangian, as it is the case for the
◦
ND

ABC component of ND
ABC , which enters

the fermion mass term in the N = 2 theory, or the NAB component of Nβ
αAB which enters

both in the shift tensor ND
ABC and in the spin-1/2 mass terms of the N = 6 truncation

(see appendix C). These shifts moreover play a role in rewriting the N = 8 scalar potential

in terms of the only fermion shifts pertaining to the two truncations. The simplest way to

achieve this is perhaps to restrict the N = 8 Ward identity:

δi
jV

(N=8) = g2

(

−12Sik Sjk +
1

6
Nj

kℓmN i
kℓm

)

, (4.27)

to the N = 6 and N = 2 indices and to the common scalar content of the two truncations:

δA
B V

(N=8) ≈ g2

(

−12SAC SBC +
1

6
NB

CDENA
CDE +NB

CNA
C

)

, (4.28)

δα
β V

(N=8) ≈ g2

(

−12Sαγ Sβγ +
1

2
Nβ

γABNα
γAB

)

, (4.29)
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where, as usual ≈ denotes the restriction to Φ(in). By tracing the above identities we obtain

the scalar potential written in terms of N = 6 and N = 2 quantities respectively:

V (N=8) ≈ V (N=6) = g2

(

−2SAB SAB +
1

36
NA

BCDNA
BCD +

1

6
NA

BNA
B

)

, (4.30)

V (N=8) ≈ V (N=2) = g2

(

−6Sαβ Sαβ +
1

4
Nα

βABNα
βAB

)

. (4.31)

Note that the two expressions (4.30), (4.31) are alternative descriptions of a same func-

tional, which is the restricted N = 8 potential. We conclude that the N = 8 Ward identity

implies a non trivial relation between the N = 6 and N = 2 fermion shifts, which is crucial

in order to rewrite the same restricted N = 8 potential in terms of the quantities pertaining

to the two truncations.

4.1 The gaugings of the N = 6 and N = 2 truncations

Having discussed the general form of the N = 6 and N = 2 truncations of the (gauged)

N = 8 theory, let us show that these describe respectively the most general gauged N = 6

theory and the most general N = 2 gauged supergravity, based on the scalar manifold (4.5).

In other words we consider here the problem of characterizing the most general local sym-

metries which these models may exhibit. To this end it is useful to describe their gauging

by using the embedding tensor formalism [48–50] (for recent reviews on the embedding ten-

sor formalism and its application to flux compactifications see [51]). Let us briefly recall

the main facts about this technique and consider the gauging of an extended supergravity

with nv vector fields AΛ
µ , Λ = 0, . . . , nv − 1, and a scalar manifold of the form G/H, where

G represents the on-shell (classical) global symmetry group and H its maximal compact

subgroup. The gauging procedure consists in promoting a suitable subgroup G of the global

symmetry group of the Lagrangian to local symmetry, gauged by (a subset of) the electric

potentials of the theory. The formalism introduced in [49, 50] allows to freely choose the

candidate gauge group inside the full on-shell global symmetry group G of the ungauged

theory by allowing the minimal couplings to involve not just the electric fields but also the

magnetic ones AΛ µ in a symplectic covariant fashion.10 In this way the analysis of all pos-

sible gaugings is no longer constrained by the choice of the original ungauged Lagrangian

and can refer to the full non-perturbative symmetries of the ungauged theory. Let us use

the index M to label the symplectic representation R of G in which the electric and mag-

netic charges transform, so that a generic symplectic vector reads VM = (V Λ, VΛ). We

shall also denote by ΩMN the symplectic invariant matrix. Finally let the index n label the

adjoint representation of G. The choice of the gauge algebra inside the Lie algebra of G,

to be gauged by a subset of the electric and magnetic potentials, can be parametrized by a

G-covariant embedding tensor θM
n, which expresses the gauge generators XM as a linear

combination of the generators tn of G: XM = θM
n tn. By definition θM

n naturally belongs

to the product R×Adj(G). The deformations of the original ungauged Lagrangian which

10Consistency of the construction also requires the addition of antisymmetric tensor fields in the adjoint

representation of G. Additional gauge symmetries guarantee that the introduction of these extra fields does

not add new degrees of freedom to the theory.
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yield the gauged one with the same amount of supersymmetries, can be written in terms of

the embedding tensor in a G-invariant way. Consequently the gauged equations of motion

and Bianchi identities formally exhibit the same global symmetries as the ungauged ones

provided θM
n is transformed under G as well. This action of G extended to θM

n can be

interpreted as a mapping between different gauged supergravities. The electric-magnetic

duality action of the generators tn of G is represented by symplectic matrices (tn)M
P ,

which are meant to act on the vectors of electric and magnetic charges. We can then de-

fine the G-tensor XMN
P = θM

n (tn)N
P , in the same representation as θM

n. For theories

with N ≤ 2 not all generators of G are associated with an electric-magnetic duality action

(as it is the case for the quaternionic isometries in N = 2 theories). These symmetries

have (tn)M
N = 0 and thus do not contribute to XMN

P . Consistency of the construction

of a gauged extended supergravity requires θM
n to satisfy some G-covariant constraints

consisting of a linear condition on XMN
P :

X(MN
L ΩP )L = 0 , (4.32)

and the following quadratic conditions

θM
m θN

n fmn
p +XMN

P θP
p = 0 , (4.33)

θM
mθN

n ΩMN = 0 , (4.34)

where fmn
p are the structure constants of G: [tn, tm] = fmn

p tp. Equation (4.33) expresses

the requirement that θM
n be a gauge invariant quantity and implies the closure of the

gauge algebra g inside the Lie algebra of G: [XM , XN ] = −XMN
P XP . Equation (4.34)

guarantees mutual locality between the electric and magnetic components of θM
n. In

supergravities with N > 2 all tn have non trivial electric-magnetic duality action and it

can be shown that (4.32) and (4.33) imply (4.34). The quadratic conditions (4.33), (4.34)

on the structure constants of the gauge algebra imply the Ward identity (3.1) which is

crucial for the supersymmetry of the gauged Lagrangian.

Note that the constraints (4.32), (4.33) and (4.34) are manifestly G-covariant. The

linear one in particular amounts to a condition onG-representation of the embedding tensor

in the decomposition of R × Adj(G). For instance in the maximal theory G = E7(7),

H = SU(8), R = 56, Adj(G) = 133 and (4.32) implies that θM
n belong to the 912

representation in the decomposition of 56 × 133.

As far as the N = 6 and N = 2 truncations are concerned, in both cases the global

symmetry group G can be identified with the maximal subgroup SO∗(12)×SU(2) of E7(7),

with the only difference that in the former theory the SU(2) has a trivial action since all

fields are singlets with respect to it, while this is not the case for the latter model. In

the N = 2 truncation the SU(2) factor is a global symmetry group whose generators tx,

x = 1, 2, 3, have a trivial electric-magnetic duality action: (tx)M
N = 0. As we shall see the

gauging of this SU(2) group amounts to introducing a Fayet-Iliopuolos term.

In both the N = 6 and N = 2 theories, R = (32,1), Adj(G) = (66,1) + (1,3) and

the decomposition of R× Adj(G) reads

(32,1) × [(66,1) + (1,3)] → (32,1) + (1728,1) + (352,1) + (32,3) . (4.35)
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The constraint (4.32) implies that the representations in the above decomposition which

are in common with the three times symmetric product of the (32,1) should vanish. Since

[(32,1) × (32,1) × (32,1)]sym. → (32,1) + (4224,1) + (1728,1) , (4.36)

we conclude that in both theories the most general gaugings are defined by an embedding

tensor in the following representations:

θM
n ∈ (352,1) + (32,3) . (4.37)

The gaugings parametrized by an embedding tensor θM
x in the (32,3) representation

involve the SU(2) generators and therefore have no effect in the N = 6 theory.11 In

the N = 2 theory instead they correspond to introducing an electric-magnetic F-I term,

corresponding to constant electric and magnetic momentum maps Px
M = (Px

Λ,PxΛ) ≡ θM
x.

Condition (4.33) in this case expresses the equivariance of the (constant) momentum maps:

PM
x PN

y ǫxy
z +XMN

PPP
z = 0 , . (4.38)

Note that the representations (4.37) occur in the branching of the 912 of E7(7) with respect

to SO∗(12) × SU(2)

912 → (12,2) + (220,2) + (352,1) + (32,3) , (4.39)

and are the only non-doublet representations. From this we conclude that the most general

N = 6 gauged supergravity can be obtained from the gauged N = 8 supergravity by truncat-

ing the fields and the embedding tensor to the non-doublet representations with respect to

SU(2). Let us illustrate the implications of the above discussion on the fermion shifts and

scalar potential of the gauged N = 6 supergravity.

In a generic gauged extended supergravity, the fermion shifts, which belong to repre-

sentations of H, are linear in the embedding tensor. In an extended supergravity based

on a homogeneous symmetric scalar manifold, they are in fact expressed in terms of the

so called T-tensor (originally introduced in [21] for the maximal supergravity), which is an

H-covariant quantity, obtained by “boosting” θM
n by means of the scalar-dependent coset

representative V(Φ):

T (Φ, θ)M
n = (V−1 ⋆ θ)M

n ≡ V−1
M

M Vn
n θM

n , (4.40)

where VM
M and Vn

n are the matrix representations of the coset representative in the R

and Adj(G) representations of G, while the underlined indices are acted on by H transfor-

mations. If the scalar fields Φ and θM
n are simultaneously transformed by means of a G

transformation g, T (Φ, θ) transforms under a corresponding H-compensating transforma-

tion depending on Φ and g. In this sense T (Φ, θ) is an H covariant quantity, and thus can

11This however does not imply that it is vanishing. Indeed this component of the embedding tensor is

related to the (352,1) by the quadratic constraints (4.33) and (4.34). This is apparent from our discussion

of the N = 8 Ward identity, which shows that the N = 6 and N = 2 expressions of the scalar poten-

tial, (4.30), (4.31), coincide on the common bosonic sector. The (352,1) contributes to both expressions

while the (32, 3) component contributes to the latter only.

– 15 –



J
H
E
P
0
4
(
2
0
0
9
)
0
7
4

be decomposed into irreducible H– representations. These irreducible components com-

prise the fermion shift tensors. However T (Φ, θ) can also be viewed as a G-tensor, since

it is obtained by acting on the G-tensor θ by means of a G-transformation V(Φ). This

implies that T (Φ, θ) satisfies the same linear and quadratic constraints as θ and thus, in

particular, that it should belong to the same G-representation as θ. The quadratic con-

straints on T (Φ, θ), on the other hand, imply the Ward identity for the fermion shifts.

Therefore the H- representations defining the fermion shift tensors should appear in the

branching of the embedding tensor (or T-tensor) G-representation with respect to H. For

instance, in the N = 8 theory, the branching of the 912 with respect to SU(8) yields the

SU(8)-representations pertaining to Sij and Nl
ijk:

912 → 36 + 420 + 36 + 420 . (4.41)

Similarly, for the N = 2 and N = 6 theories, branching the common embedding tensor

representation (4.37) with respect to the compact symmetry group SU(6) × SU(2) × U(1)

we find

(352,1) + (32,3) → (35,1)+3 + (21 + 15 + 105,1)+1 + (21 + 15 + 105,1)−1 +

+(35,1)−3 + (1,3)+3 + (15,3)+1 + (1,3)−3 + (15,3)−1 . (4.42)

The correspondence of the above representations with the fermion shifts introduced in

(4.21)–(4.25) is:

N = 6: (35,1)+3 ≡ NB
A , (21 + 105 + 15,1)−1 ≡ (SAB , ND

ABC) , (4.43)

N = 2: (1,3)+3 ≡ Sαβ , (15,1)−1 + (15,3)−1 ≡ Nβ
αAB . (4.44)

In next section the SO(6)×SO(2) gauging of the N = 6 theory will be discussed in detail. It

is defined by choosing as non-vanishing component of the embedding tensor corresponding

to the only SO(6)-singlet in the (352,1) representation. As explained in footnote 11,

this choice implies that also a suitable component in the (32,3) (singlet with respect to

SO(6)× SO(2)) be different from zero. The latter however will not contribute to couplings

in the gauged theory. Similarly in section 4.3 we shall consider the same gauging in the

N = 2 dual model. Also in this case either components (352,1) and (32,3) will contribute.

4.2 N = 6 with SO(6) × SO(2) gauge group

We shall now discuss N = 6 gaugings in some detail and focus on the theory with SO(6)×
SO(2) local symmetry. The SO(2) factor, being contained in the SU(2) global symmetry,

has a trivial action on the N = 6 fields, so that the corresponding gauge potential A0
µ is

not minimally coupled and the gauge group is really only SO(6). Our choice of including

SO(2) in description of the gauge group is just to emphasize the parallelism between this

N = 6 and the N = 2 model to be discussed in the next section.

We start defining the relation between the fermion shifts and the embedding tensor.

Let VM
M denote the coset representative of the scalar manifold (4.5):

VM
M =

(

h̄Λ
Λ hΛΛ

f̄ΛΛ fΛ
Λ

)

, (4.45)
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where the underlined indices label the U(6) representations in which the self dual and anti-

self dual field strengths transform, and the blocks f ≡ (fΛ
Λ), f̄ ≡ (f̄ΛΛ), h ≡ (hΛΛ), h̄ ≡

(h̄Λ
Λ) satisfy the relations:

(f f †)T = f f † , (hh†)T = hh† , f h† − f̄ hT = i 11 , (4.46)

f † h − h† f = −i 11 , fT h− hT f = 0 . (4.47)

Using the above properties we can write the general expression of V−1:

V−1
M

M =

(

−i fΛ
Λ i hΛΛ

i f̄ΛΛ −i h̄Λ
Λ

)

. (4.48)

The basic quantity in terms of which the fermion shifts are expressed is the T-tensor,

introduced in the previous section. Since in the N = 6 theory all the generators of G

have a non trivial duality action, the gauging is totally characterized by the generalized

structure constants XMN
P . It is then convenient here to use a slightly different definition

of the T-tensor, with respect to eq. (4.40), and construct it by dressing XMN
P with the

scalar fields by means of the coset representative:

TM,N
P = [V−1 ⋆ X]M,N

P ≡ V−1
M

M V−1
N

N VP
P XMN

P . (4.49)

To write the fermion shifts in terms of the above quantity, we can use the corresponding

N = 8 relations and reduce them to the N = 6 theory. In the maximal gauged supergravity

the following relation holds:

Tij,kl
pq = − 1

2
√

2
δ
[p
[k N

q]
l]ij −

√
2 δ

[p
[k Sl][i δ

q]
j] . (4.50)

We then find:

NA
B = −2

√
2Tαβ, BC

AC , NAB = −8

3

√
2TC[A,B]E

CE ,

NA
BCD = −2

√
2T[CD,B]E

AE − 1

4
δA
[B NCD] , SAB =

√
2

5
TC(A,B)E

CE . (4.51)

Let us now consider the gauging of G = SO(6). Since the embedding tensor, by con-

struction, defines the gauge structure constants, it is itself a gauge invariant quantity, as

expressed by eq. (4.33). This allows to define the embedding tensor corresponding to a

given gauge group G by considering the singlets in the branching of the embedding tensor

G-representation with respect to G. In particular the embedding tensor corresponding to

G = SO(6) must be defined by a singlet in the branching of (4.37) with respect to the

SO(6) maximal subgroup of SU(6). This singlet arises only from the 21 and 21 in the

branching (4.42): 21 → 20+1. The SO(6) generators are gauged by the electric potentials

which transform in its adjoint representation, labeled by the antisymmetric couple [IJ ],

I, J = 1, . . . , 6. The index Λ splits under SO(6) into a label for the singlet and [IJ ], so

that the only non vanishing components of XMN
P read:

XI1J1,I2J2

I3J3 = 4 g δ
[I3
[I1
δJ1][I2 δ

J3]
J2] , XI1J1

I3J3
I2J2

= −XI1J1,I2J2

I3J3 . (4.52)
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The tensors Tαβ,AB
CD and TAB,CD

EF have the following general expression:

Tαβ,AB
CD =

g

2
f I1J

αβ

(

fJJ1
AB h̄I1J1

CD + hI1J1 AB f̄
JJ1 CD

)

, (4.53)

TEF,AB
CD =

g

2
f I1J

EF

(

fJJ1
AB h̄I1J1

CD + hI1J1 AB f̄
JJ1 CD

)

. (4.54)

It is useful at this point to use a U(6) covariant parametrization of the coset (4.5) in

which the scalar fields are described by the tensors φAB, φ
AB

in the 15 + 15. The coset

representative will have the following general form:

VM
M = A† exp





















0 01×15 0 φCD

015×1 015×15 φAB
1
2 φ̄

EF ǫEFABCD

0 φ̄CD 0 01×15

φ̄AB 1
2 φEF ǫ

EFABCD 015×1 015×15





















,

A =
1√
2

(

11 i 11

11 −i 11

)

. (4.55)

A bosonic background characterized by the value of the scalar fields at the origin φAB ≡ 0

describes a maximally supersymmetric (i.e. N = 6) AdS4 background. Indeed, since we

have switched on only a component of the embedding tensor in the 21 + 21, at the origin

the T-tensor will lie in the same representations and thus have vanishing projections on

the 35 + 105, which are nothing but the spin 1/2 shift matrices NA
B , N

A
BCD. On

such background then the spin 1/2 fields have vanishing supersymmetry variation, while

SAB = a1 δ
AB , where |a1| = 2. Since V0 = V (φ = 0) = −48 g2 one easily verifies that

−3m2
3
2

= −12 g2 |a1|2 = V0, which is condition (3.9) for a maximally supersymmetric AdS4

solution. Note that the unbroken symmetry in the vacuum is OSp(6/4)×SO(2), where the

SO(2) is gauged by the singlet gauge field under which no field of the theory is charged, as

it should be since SO(2) commutes with the supersymmetry generators.

Let us analyze the relation between this four dimensional vacuum solution and the

ten dimensional AdS4 × CP 3 solution of Type IIA superstring. This higher dimensional

background, as recalled in section 2, is characterized by a 4- and a 2-form flux Fµνρσ =

g ǫµνρσ , FIJ = kJIJ , JIJ being the Kähler form on CP 3. The former is invariant under

SO(6) while the choice of the latter breaks SO(6) into U(3). We may choose indeed JIJ to

be the U(1) generator in SO(6) commuting with SU(3). The U(4)-invariant AdS4 vacuum

at the origin is likely to describe this compactification. In fact we may wonder if the flux

FIJ enters this effective N = 6 theory as a v.e.v. of a U(3) invariant scalar field, thus

defining a U(3)-invariant vacuum characterized by two distinct parameters: g, k. As we

shall see this is not the case. In order to work out all the U(3) invariant vacua of the N = 6

supergravity with SO(6) gauging it suffices to compute the fermion shifts and the scalar

potential as a function of the only complex singlet φsing.
AB = φ δIJ

AB JIJ . The fermion shift

tensors read:

NA
B = −a2

φ

φ̄
δAD JDB , NA

BCD = −3 a2 δ
AE JE[BJCD] , SAB = a1 δ

AB , (4.56)
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where

a2 =
1

2
e−3 |φ| (e4 |φ| − 1)

[

φ̄

|φ| (e2 |φ| + 1) − (e2 |φ| − 1)

]

, (4.57)

a1 = −1

4
e−3 |φ|

[

φ̄

|φ| (e2 |φ| + 1)3 − (e2 |φ| − 1)3
]

. (4.58)

The scalar potential is:

V (N=6)(φ, φ̄) = −48 g2 cosh(2 |φ|) . (4.59)

From the above result it is clear that the only U(3) invariant vacuum of the gauged N = 6

supergravity coincides with the SO(6) invariant, maximally supersymmetric, AdS4 back-

ground at the origin. In section 4.4 we shall show that this N = 6 AdS4 theory does not

describe the spontaneously broken phase of a gauged N = 8 theory, for any gauging. It

can be obtained only as a consistent truncation of the SO(8)-gauged N = 8 theory. The

same holds true for the N = 2 AdS4 theory to be discussed in next section.

4.3 N = 2 gauging with SO(2) × SO(6) gauge group

As we have seen above, in the absence of hypermultiplets the N = 2 scalar potential has

the general form

V (N=2) = −1

2
(ℑN−1)ΛΣPΛPΣ + (UΛΣ − 3L̄ΛLΣ)Px

ΛPx
Σ . (4.60)

Px
Λ is a constant Fayet-Iliopoulos term that, in the gauging at hand, can be chosen as:

Px
0 = 4 g δx

1 , Px
Λ = 0 for Λ 6= 0 , (4.61)

corresponding to the gauging of the global SO(2) ⊂ SU(2) symmetry.12 The propotential

PΛ, with PΛ=0 = 0 is instead responsible for the gauging of the vector multiplets isometries,

along the Ge = SO(6) Lie algebra.

The AdS4 supersymmetric vacuum corresponds to

PΛ|vac = 0 and U00 = 0|vac . (4.62)

In the background (4.62) we then obtain

V |AdS4
= −3m2

3/2 , (4.63)

where m3/2 = 4 g.

The condition

U00 = 0 (4.64)

12This choice corresponds to the SO(6)×SO(2) singlet in the (32,3) component of the embedding tensor.

A corresponding SO(6)-singlet in the (352, 1) component will have to be switched on in the embedding

tensor because of the quadratic constraints.
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which is a necessary condition to preserve supersymmetry, is equivalent to set DaL
0 =

f0
a = 0 (a = 1, . . . 15) on the vacuum. Note that (4.64) is a crucial condition for the

gauging. It describes how the SO(2) factor is coupled to the gauge fields. For instance,

if we would adopt instead a parametrization for the symplectic sections based on a cubic

prepotential, then we would find U00 = 3|L0|2, which corresponds to a Minkowski vacuum

(rather than anti de Sitter), with broken supersymmetry and flat directions for PΛ = 0.

For a gauge group Ge, this would also give solutions with Ge → U(1)rank Ge through the

Higgs mechanism and would correspond to a no-scale N = 2 supergravity. The standard

cubic parametrization corresponds to a manifestly SU∗(6) invariant setting, since this is

the parametrization which comes from dimensional reduction of D = 5 supergravity. The

manifest compact symmetry in this case is USp(6) rather that U(6), so the coordinates

corresponding to the Cartan decomposition are not special coordinates, which in this setting

would correspond to the entry fΛ
1 = LΛ of the matrix (4.45). In the Cartan parametrization

we have X15 = f15
1 /f1

1 , and the SO(6) invariant part corresponds to X15 = 0.

We note that the simplest N = 2 theory which exhibits vacua with an unbroken

OSp(2/4)×Ge algebra are N = 2 vector multiplets minimally coupled to supergravity [22].

In this case one can easily show that the condition (4.64) is satisfied in the Ge unbroken

phase. These models, together with their spontaneously broken phases were studied in [52].

We remark that the special Kähler geometry underlying minimal couplings correspond to

the CPn non-compact manifolds SU(1, n)/U(n). These are the only symmetric special

geometry which cannot be lifted to five dimensions.

4.4 N = 6 and N = 2 AdS4 backgrounds from gauged N = 8 theory

In this section we show that the U(4) gauged N = 2 and N = 6 theories (the latter

describing the low energy dynamics of Type IIA superstring on a certain AdS4 × CP 3

background) cannot be viewed as spontaneously broken phases of a gauged N = 8 theory,

they are instead consistent truncations of the maximal supergravity with SO(8) gauging.

This implies that the deformation, discussed in [13, 26], which takes AdS4×S7 to the N = 6

AdS4 × CP 3 is not described by the v.e.v. of a zero-mode on AdS4, i.e. of a scalar field in

the maximal four dimensional model with gauging SO(8). This is consistent with the fact

that the only U(4)-invariant vacuum found by Warner in the eighties [53] has N = 0 and

should correspond to the compactification of D = 11 supergravity on a “stretched seven

sphere” discussed in [54]. Here we shall show, using a group theoretical argument, that no

U(4)-invariant N = 6 vacuum can be found in any gauged N = 8 supergravity.

We start by noting that in the N = 8 theory, with respect to the common SO(8)

subgroup of the SL(8,R) and SU(8) symmetry groups, the 8 of SU(8) and the 8 of SL(8,R)

correspond to the representations 8s and 8v respectively. The U(4) symmetry group of the

N = 6 AdS4 × CP 3 solution, is embedded inside SO(8) in such a way that the following

branchings hold:

8s → 1+1 + 1−1 + 60 ,

8v → 4+ 1
2

+ 4− 1
2

8c → 4− 1
2

+ 4+ 1
2
. (4.65)
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Consequently the corresponding symmetric tensor product representations 35s, 35v, 35c

branch in the following way:

35s → 1+2 + 10 + 1−2 + 6+1 + 6−1 + 200 ,

35v → 10+1 + 10−1 + 150 ,

35c → 10−1 + 10+1 + 150 , (4.66)

the 70 scalar fields transform in the 35v + 35c, which can be described as the self-dual

and anti self-dual components of the 4-times antisymmetric tensor product of the 8s, re-

spectively. We know that the most general gauging of the N = 8 theory is encoded in

an embedding tensor transforming in the 912 of E7(7). This representation describes not

just the plain embedding tensor θM
n defining the gauge algebra, which encodes the cou-

pling constants of the gauged theory, but also the T-tensor T (Φ, θ) introduced in (4.40).

Therefore if the maximal theory with gauge group G admits a vacuum at 〈Φ〉 ≡ Φ0 with

symmetry group G′ ⊂ G, the physical quantities on such vacuum (masses, couplings etc. . . )

must be defined in terms of the T-tensor evaluated on this solution, namely T0 = T (Φ0, θ),

which must be a G′-singlet. Since T (Φ, θ) belongs to the 912 representation, a G′-invariant

vacuum is described by a G′-singlet (T0) in the 912 which provides the fermion shift tensors

computed on the vacuum. Moreover such quantity is subject to the quadratic constraints,

which amount to the Ward identity on the fermion shift tensors.

With respect to SU(8) the 912 branches in the 36 + 420, corresponding to the shift

tensors Sij and N i
jkl respectively, and the conjugate representations. With respect to

SO(8) the 36 branches into 1+35s, while the 420 branches into 35v+35c+350. Therefore

the branching of the 912 with respect to SO(8) reads:

912 → 2 × (1 + 35s + 35v + 35c + 350) . (4.67)

For each representation within parentheses the two copies are mapped into one another by

interchanging the electric with the magnetic vector fields in the ungauged theory (exchang-

ing the role of electric and magnetic charges) [48], which has no effect on the physics of

the resulting gauged model. By choosing once for all the symplectic frame of the ungauged

theory (namely the 16 vector fields of the model out of the 32 of SO∗(12)), we automati-

cally single out one of the two copies and thus can focus only on the representations within

parentheses in (4.67). The singlet define the SO(8) gauging of de Wit and Nicolai. We may

wonder if the 912 contains any other singlet, besides this one, with respect to the U(4)

symmetry of the N = 6 background. Since the 350 does not contain any U(4) singlet,

from (4.66) we conclude that the only other singlet T0 is the one contained in the 35s and

corresponds to a symmetric 8 × 8 matrix Sij of the form

Sij = diag(s, s, s′, s′, s′, s′, s′, s′) , (4.68)

where 2 s + 6 s′ = 0 from the tracelessness condition. So far we have not considered the

effect of the quadratic constraints on the T-tensor T0, which imply the Ward identity for

the fermion shifts. Let us show that a generic component of T-tensor in the 35s violates
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the Ward identity, and therefore does not survive the quadratic constraint. Consider a

generic T0 ∈ 1 + 35s. It can be expressed in terms of a symmetric matrix Sij = Sji. Since

T0 has no component in the 420, it will yield a vanishing dilatino shift, Ni
jkl = 0, while

the gravitino shift will be described by the matrix Sij itself. The Ward identity at the

origin would read:

V (N=8) δj
i ∝ Sik S

kj . (4.69)

the only solution to the above identity is Sij ∝ δij (s = s′) which corresponds to the SO(8)

gauging T0 ∈ 1, with no component in the 35s.

As far as the N = 0 U(4)-invariant AdS4 studied in [26, 53, 54] is concerned, the

above argument about the Ward identity does not apply. Indeed the SU(4) symmetry

groups pertaining to the N = 0 and N = 6 vacua are embedded in inequivalent ways

inside SO(8), see appendix B. With respect to the U(4) symmetry group of the N = 0

vacuum the following branching holds:

8c → 1+1 + 1−1 + 60 ,

8s → 4+ 1
2

+ 4− 1
2

8v → 4− 1
2

+ 4+ 1
2
. (4.70)

Now it is the 35c representation which contains the U(4)-singlet. A U(4) invariant T-

tensor T0 would then be a combination of the SO(8) singlet and the U(4) singlet in the

35c: T0 ∈ 1 + 35c. The Ward identity would now allow a component of T0 inside 35c,

since 35c is contained inside the 420 of SU(8), and thus T0 will yield Sij ∝ δij , N i
jkl 6= 0.

The singlet T0 in the 35c, as any element of the same representation, can be obtained by

acting on the SO(8)-singlet embedding tensor, defining the SO(8) gauging, by means of the

coset representative V parametrized by a suitable scalar field φijkl, since the scalar fields

transform in the 35v + 35c. The v.e.v. of such scalar field provides the deformation which

determines the SO(8) → U(4) spontaneous symmetry breaking and the supersymmetry

breaking N = 8 → N = 0.

5 An N = 2 truncation of the N = 8 theory with no vector multiplets

and ten hypermultiplets

We can consider a different N = 2 truncation of the maximal theory in four dimensions with

with no vector multiplets and ten hypermultiplets. This is the maximal N = 2 truncation

of the N = 8 theory with no vector multiplets. The scalar fields span the manifold:

M(N=2) =
E6(+2)

SU(2) × SU(6)
. (5.1)

The global symmetry group of the theory isG = U(1)×E6(+2), which is a maximal subgroup

of E7(7). This theory can indeed be obtained as a truncation of the four dimensional

maximal supergravity. Since the graviphoton is the only vector field of the model, we may

only gauge one abelian isometry of the quaternionic manifold. Let us describe all possible
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gaugings by means of the embedding tensor. This tensor belongs to the product of the

symplectic representation R of the electric and magnetic charges, labelled by M = 1, 2,

and the adjoint representation of G. In this case we have:

R = 1+3 + 1−3 , Adj(G) = 10 + 780 , (5.2)

and therefore

θM
n ∈ R× Adj(G) = 1+3 + 1−3 + 78+3 + 78−3 . (5.3)

The singlets 1±3 do not correspond to a viable gauging since they would correspond to

gauging the global U(1) symmetry by means of the graviphoton which is charged itself

under this U(1). Therefore we are left with

θM
n ∈ 78+3 + 78−3 . (5.4)

Notice that the above representations enter the branching of the E7(7) embedding tensor

representation with respect to G:

912 → 78+3 + 78−3 + 27+1 + 27−1 + 351+1 + 351−1 . (5.5)

The fermion fields consist in the gravitini ψα
µ , α = 1, 2, and 20 hyperini ζABC , A = 1, . . . , 6.

The corresponding gauge contribution to the supersymmetry transformation laws read:

δψα
µ = · · · + i g Sαβ γµ ǫβ ,

δζABC = · · · + g Nα
ABC ǫα . (5.6)

The shift tensors Sαβ and Nα
ABC transform in the representations (1,3) and (20,2) of

the H = SU(2) × SU(6) subgroup of G, respectively. These representations appear, to-

gether with their conjugate, in the branching of the embedding tensor representation with

respect to H:

78 → (1,3) + (20,2) + (35,1) , (5.7)

the latter representation correspond to a quantity NA
B which does not appear in the theory

as a fermion shift matrix, though it enters in the expression of the hyperino mass matrix:

MABC, EFG = − 1

24
ǫA1A2A3B[B1B2 NB3]

B . (5.8)

If we interpret this theory as a truncation of the N = 8 one, the tensor NA
B makes sense

as the fermion shift pertaining to the fermions χAαβ which are truncated.

If we denote by V the coset representative of M(N=2), the moment maps corresponding

to the gauged E6(+2) isometry reads:

Px ∝ θ1
n Vn

x , (5.9)

where Vn
m is the matrix representation of V in the adjoint representation of G. The

theory has an N = 2 AdS-vacuum, corresponding to the gauging of a U(1) inside SU(2)
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and zero expectation value of the scalars in the H-covariant parametrization of the coset:

〈φαABC 〉 = 0. Indeed such a gauging would correspond to choosing θ ∈ (1,3). At the origin

the T-tensor coincides with θ and thus has zero component on the (20,2) representation,

implying that (Nα
ABC)|vac. = 0. This gauging corresponds to a truncation of the SO(8)

gauging of the N = 8 theory. The corresponding theory cannot have an N = 2 → N = 1

spontaneous supersymmetry breaking since it is not coupled to vector multiplets. If we

gauge a U(1) subgroup of SU(6), θ ≡ (θA
B) ∈ (35,1). At the origin we would have

(Nα
ABC)|vac. = (Sαβ)|vac. = 0 which corresponds to an N = 2 Minkowski vacuum, in which,

depending on the eigenvalues of the U(1) generator θA
B , a number of hypermultiplets will

become massive.
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A Supergroups with zero Killing-Cartan form

We recall the supergroups with zero Killing-Cartan form. There are three examples

1. The first example is based on the superalgebra A(n|n) with n ≥ 1. The even part of

A(n|n) is An ⊕An and the odd part is (n, n̄)⊕ (n̄, n) where An is the usual classical

Lie algebra. The classical real form of this example is psu(n|n) which have subalgebra

su(n) ⊕ su(n), it is generated by supermatrices 2n × 2n with vanishing supertrace

and defined modulo the identity matrix 12n×2n which has vanishing supertrace. The

superalgebra has
(

2n2 − 2
∣

∣

∣
2n2

)

generators, (it can be shown the corresponding

supergroup manifold has vanishing Ricci curvature).

2. The second example is based on the superalgebra D(n + 1|n) with n ≥ 1. The

even part is Dn+1 ⊕ Cn and the odd part is (2n + 2, 2n) where Dn and Cn are the

classical Lie algebra series. The real form is osp(2n + 2|2n) (with n ≥ 1) which has

the subalgebra so(2n+2)× sp(2n). It is generated by orthosymplectic supermatrices

4n+ 2× 4n+ 2. The total number of generators is
(

4n2 + 4n+ 1
∣

∣

∣
4n2 + 4n

)

, (it can

be shown the corresponding supergroup manifold has vanishing Ricci curvature).

3. The third example is based on the superalgebra D(2, 1;α) with α 6∈ {0,−1}. The

even part is A1 ⊕ A1 ⊕ A1 and the odd part is (2, 2, 2). The classical real form has

bosonic subalgebra sl(2) ⊕ sl(2) ⊕ sl(2). The total number of generators is (9|8).

There are super-cosets with zero Killing forms. They are generated by symmetric

cosets. Here there are some examples:
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1. PSU(2, 2|4)/SO(1, 4)×SO(5). This coset has 10 bosonic generators and 32 fermionic

generators. The bosonic subgroup is SO(2, 4) × SO(6)/SO(1, 4) × SO(5) which is

AdS5 × S5. The fermionic generators are associated to the Killing spinors of the

background.

2. OSp(6|4)/U(3) × SO(1, 3). This coset has 10 bosonic generators and 24 fermions.

The bosonic subgroup is SO(6) × Sp(4)/U(3) × SO(1, 3) which is AdS4 × CP 3. The

fermionic generators are associated to the Killing spinors which are 24.

3. PSU(n + 1|n + 1)/SU(n|n + 1) is also denoted by CPn|n+1 which is a Ricci flat su-

permanifold. In the case n = 3 this is the famous Witten’s supertwistor space CP 3|4.

4. OSp(2n+2|2n)/OSp(2n+1|2n) is also denoted by S
2n−1|2n which is the supersphere.

B Relevant branchings and decompositions

SO∗(12) × SU(2) ⊂ E7(7).

56 → (12,2) + (32,1) , (B.1)

133 → (1,3) + (66,1) + (32′,2) , (B.2)

912 → (12,2) + (220,2) + (32,3) + (352,1) . (B.3)

SO∗(12) tensor product decompositions.

32 × 66 → 32 + 1728 + 352 , (B.4)

(32 × 32 × 32)s → 32 + 4224 + 1728 . (B.5)

SU(6) × SU(2) × U(1) ⊂ SU(8).

8 → (6,1)+ 1
2

+ (1,2)− 3
2
,

28 → (15,1)+1 + (1,1)−3 + (6,2)−1 ,

36 → (21,1)+1 + (6,2)−1 + (1,3)−3 ,

56 → (20,1)+ 3
2

+ (6,1)− 5
2

+ (15,2)− 1
2
,

70 → (15,1)−2 + (15,1)+2 + (20,2)0 ,

420 → (105,1)+1 + (20,2)+3 + (84,2)−1 + (15,1)+1 + (15,3)+1 + (35,1)−3 + (6,2)−1 .

(B.6)

SU(6) × U(1) ⊂ SO∗(12).

12 → 6−1 + 6̄+1 , (B.7)

32 → 1+3 + 15+1 + 15−1 + 1−3 , (B.8)

32′ → 6+2 + 200 + 6−2 , (B.9)

66 → (35 + 1)0 + 15+2 + 15−2 , (B.10)

352 → 35+3 + (21 + 15 + 105)+1 + (21 + 15 + 105)−1 + 35−3 , (B.11)
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SU(4) × U(1) ⊂ SO(8). There are three inequivalent SU(4) subgroups of SO(8) which

we shall denote here by SU(4)i, where i = v, c, s. With respect to U(4)i the following

branchings hold (i 6= j 6= k 6= i)

8i → 1+1 + 1−1 + 60 ,

8j → 4+ 1
2

+ 4− 1
2

8k → 4− 1
2

+ 4+ 1
2
,

35i → 1+2 + 10 + 1−2 + 6+1 + 6−1 + 200 ,

35j → 10+1 + 10−1 + 150 ,

35k → 10−1 + 10+1 + 150 ,

350 → 10+1 + 10−1 + 10+1 + 10−1 + 6+1 + 6−1 + 450 + 450 + 64+1 + 64−1 + 15+2 +

+15−2 + 2 × 150 + 20′
0 , (B.12)

the symmetry group associated with the N = 6 vacuum is SU(4)s × U(1), while that

associated with the N = 0 one discussed in section 4.4 is SU(4)c × U(1).

C Fermion mass terms

In this appendix we write the spin-1/2 mass terms for the the N = 6 and N = 2 truncations

of the N = 8 theory. The spin-1/2 mass term for the N = 8 theory reads

gM ijk, lmn χijkχlmn , (C.1)

where the mass matrix is expressed uniquely in terms of Ni
jkl as follows [21]:

M ijk, lmn = − 1

144
ǫijkpqr[lmNn]

pqr . (C.2)

The above equation allows us to decompose (C.1) in terms of the SU(6) × SU(2) × U(1)-

irreducible tensors, introduced in section 4, and the spin-1/2 fields pertaining to the N = 6

and N = 2 truncations. The N = 6 and N = 2 spin-1/2 mass terms read:

N = 6 :

− g

24
ǫA1A2A3CB1B2NB3

CχA1A2A3
χB1B2B3

(C.3)

− g

12
ǫBA1A2A3B1B2

◦
N B3

A1A2A3
χB1B2B3

χB +
g

16
ǫA1A2A3B1B2BNB1B2χA1A2A3

χB ,

N = 2 :
g

24
ǫαβǫABEFGC

◦
N D

EFGχαABχβCD − g

16
ǫABCDEF ǫαγ

◦
N β

γEFχαABχβCD , (C.4)

where the irreducible tensors
◦
ND

ABC , NAB,
◦
Nβ

αAB were defined in eq. (4.26).
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